Force & Motion & Simple Machines Learning Goals:

	Learning Goal	Goal	Quiz	Test
1	MOTION		†	1
1	I can classify different types of motion.			
	★ This means that when I am given a scenario, I can determine whether the type of motion is			
	straight line, projectile, circular, deformation, oscillating, or vibrational.			
2	SPEED/VELOCITY/ACCELERATION			
	I can calculate an object's speed (distance/time) and velocity.			
	This means that given an object's speed, distance, and/or time I can calculate the missing			
	information and label my answers with the correct units.			
	This means I can explain what it means to accelerate.			
	★ This means I can calculate the acceleration of an object using the appropriate formula.			
	(Challenge only)			
3	GRAPHING			
3	I can create and interpret graphs representing an object's motion in terms of distance over time			
	(speed) using metric units.			
	This means I can create and interpret a line motion graph.			
	★ This means that I can create and interpret a speed graph.			
1	FORCES			
4	I can identify and describe the types of forces acting on an object in motion, at rest, floating/sinking			
	(i.e., type of force, direction, amount of force in Newton's)			
	★ This means that I can measure forces usign a spring scale accurately, in Newtons.			
	This means that it can compare the effects of balanced and unbalanced forces (including			
	magnetic, gravity, friction, push or pull) on an object's motion.)			
	This means that I can determine the net force and direction of two combined or opposing			
	forces including the correct units.			
5	GRAVITATIONAL FORCE			
5	I can explain and compare the impact of gravitational force.			
	★ This means I can explain every object exerts a gravitational force of attraction on every			
	other object.			
	★ This means I can recognize an object's weight is a measure of the gravitational force of a			
	planet/moon acting on that object.			
	★ This means I can compare the amount of gravitational force acting between objects (which			
	is dependent upon their masses and the distance between them).			
	★ This means I can explain how the acceleration of a moving object is affected by the amount			
	of net force applied and the mass of the object (F = MA).			
6	NEWTON'S LAWS OF MOTION			
U	I can explain and apply Newton's three laws of motion.			
	★ First Law: I can explain that when forces (including magnetic, gravity, friction, push or pull)			
	are balanced, objects are at rest or their motion remains constant.			
	★ Second Law: I can explain that the greater the mass of an object, the greater the force			
	necessary to accelerate that object.			
	★ Third Law: I can explain that for every action there is an equal and opposite reaction.			
7	WORK			
′	I can understand what is work is and how to apply it.			
	★ This means I can recognize examples of work being done on an object (force applied and			
	distance moved in the direction of the applied force) with and without the use of simple			
	machines.			
	★ This means that I can use the formula (W=Fxd) to calculate work and give the answer using			
	the correct units.			
8	SIMPLE MACHINES		1	
	I can understand how simple machines can affect force and work.			
	★ This means I can explain how simple machines affect the amount of effort force, distance			
	through which a force is applied, and/or direction of force while doing work			
	★ This means I can evaluate simple machine designs to determine which design requires the			
	least amount of effort force and explain why.			
		1	1	1